p-ADIC FAMILIES AND GALOIS REPRESENTATIONS FOR GSp(4) AND GL(2)

نویسنده

  • ANDREI JORZA
چکیده

In this brief article we prove local-global compatibility for holomorphic Siegel modular forms with Iwahori level. In previous work we proved a weaker version of this result (up to a quadratic twist) and one of the goals of this article is to remove this quadratic twist by different methods, using p-adic families. We further study the local Galois representation at p for nonregular holomorphic Siegel modular forms. Then we apply the results to the setting of modular forms on GL(2) over a quadratic imaginary field and prove results on the local Galois representation `, as well as crystallinity results at p.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chenevier’s lectures on eigenvarieties of definite unitary groups

There will be three objectives in Chenevier’s lectures: (1) construction of the eigenvarieties of definite unitary groups of any rank. (2) study of the local and global properties of the families of Galois representations on the eigenvarieties. (3) applications to standard conjectures relating arithmetic L-functions at integers and associated Selmer groups. Part (3) (lectures 6, 7) would be the...

متن کامل

Diagonal Cycles and Euler Systems Ii: the Birch and Swinnerton-dyer Conjecture for Hasse-weil-artin L-functions

This article establishes new cases of the Birch and Swinnerton-Dyer conjecture in analytic rank 0, for elliptic curves over Q viewed over the fields cut out by certain self-dual Artin representations of dimension at most 4. When the associated L-function vanishes (to even order ≥ 2) at its central point, two canonical classes in the corresponding Selmer group are constructed and shown to be lin...

متن کامل

The Image of an Arboreal Galois Representation

Much is known regarding images of p-adic Galois representations coming from subquotients of étale cohomology groups of varieties over number fields. In particular, the Mumford-Tate conjecture gives them up to subgroups of finite index, and has been proved in many cases by Serre. In the analogous situation of arboreal Galois representations little is known. In this paper we give a conjectural de...

متن کامل

M ar 2 00 4 Computing the level of a modular rigid Calabi - Yau threefold Luis

In a previous article (cf. [DM]), the modularity of a large class of rigid Calabi-Yau threefolds was established. To make that result more explicit, we recall (and re-prove) a result of Serre giving a bound for the conductor of “integral” 2-dimensional compatible families of Galois representations and apply this result to give an algorithm that determines the level of a modular rigid Calabi-Yau...

متن کامل

TEITELBAUM ’ S EXCEPTIONAL ZERO CONJECTURE IN THE ANTICYCLOTOMIC SETTING By MASSIMO BERTOLINI

Teitelbaum formulated a conjecture relating first derivatives of the Mazur-SwinnertonDyer p-adic L-functions attached to modular forms of even weight k ≥ 2 to certain L-invariants arising from Shimura curve parametrizations. This article formulates an analogue of Teitelbaum’s conjecture in which the cyclotomic Zp extension of Q is replaced by the anticyclotomic Zp-extension of an imaginary quad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011